为什么奥氏体是顺磁性的
奥氏体为什么是顺磁性的?
奥氏体为什么是顺磁性的?
奥氏体是最密排的点阵结构,致密度高,故奥氏体的体积质量比钢中铁素体、马氏体等相的体积质量小。因此,钢被加热到奥氏体相区时,体积收缩,冷却时,奥氏体转变为铁素体—珠光体等组织时,体积膨胀,容易引起内应力和变形。
奥氏体的点阵滑移系多,故奥氏体的塑性好,屈服强度低,易于加工塑性成形。因此,钢锭,钢坯,钢材一般被加热到1100C以上奥氏体化,然后进行锻轧,塑性加工成材或加工成零部件。
一般钢中的奥氏体具有顺磁性,因此奥氏体钢可以作为无磁性钢。然而特殊成分的Fe—Ni软磁合金,也具有奥氏体组织,却具有铁磁性。
奥氏体导热性差,线膨胀系数大,比铁素体和渗碳体的平均线性膨胀系数高约一倍。故奥氏体钢可以用来制造热膨胀灵敏的仪表元件。在碳素钢中,铁素体,珠光体,马氏体,奥氏体和渗碳体的导热系数分别为77.1,51.9,29.3,14.6和4.2。可见,除渗碳体外,奥氏体的导热性最差,尤其是合金度较高的奥氏体钢更差,所以,厚钢件在热处理过程中应当缓慢冷却和加热,以减少温差热应力,避免开裂。
奥氏体是什么性质?
碳溶解在γ铁中形成的一种间隙固溶体,呈面心立方结构,无磁性。奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。
在合金钢中除碳之外,其他合金元素也可溶于奥氏体中,并扩大或缩小奥氏体稳定区的温度和成分范围。
例如,加入锰和镍能将奥氏体临界转变温度降至室温以下,使钢在室温下保持奥氏体组织,即所谓奥氏体钢。
什么是奥氏体?简要叙述奥氏体的空间结构,和主要性能?
奥氏体(Austenite)是钢铁的一种层片状的显微组织,通常是?-Fe中固溶少量碳的无磁性固溶体,也称为沃斯田铁或?-Fe。奥氏体的名称是来自英国的冶金学家罗伯茨·奥斯汀。奥氏体塑性很好,强度较低,具有一定韧性,不具有铁磁性。
奥氏体因为是面心立方,八面体间隙较大,可以容纳更多的碳。
空间结构:奥氏体为面心立方结构,碳氮等间隙原子均位于奥氏体晶胞八面体间隙中心,及面心立方晶胞的中心和棱边的中点。
假如每一个八面体的中心各容纳一个碳原子,则碳的最大溶解度应为50%(摩尔分数),相当于质量分数约20%。
实际上碳在奥氏体中的最大溶解度为2.11%(质量分数),这是由于?-Fe的八面体间隙的半径仅为0.052nm,比碳原子的半径0.086nm小。
碳原子溶入将使八面体发生较大的膨胀,产生畸变,溶入越多,畸变越大,晶格将不稳定,因此不是所有的八面体间隙中心都能溶入一个碳原子,溶解度是有限的。
碳原子溶入奥氏体中,使奥氏体晶格点阵发生均匀对等的膨胀,点阵常数随着碳含量的增加而增大。
大多数合金元素如等,在?-Fe中取代Fe原子的位置而形成置换固溶体。替换原子在奥氏体中的溶解度各不相同,有的可无限溶解,有的溶解度甚微。
少数元素,如硼仅存在于浸提缺陷处,如晶界、位错等。
主要性能:奥氏体是最密排的点阵结构,致密度高,故奥氏体的体积质量比钢中铁素体、马氏体等相的体积质量小。
因此,钢被加热到奥氏体相区时,体积收缩,冷却时,奥氏体转变为铁素体—珠光体等组织时,体积膨胀,容易引起内应力和变形。
奥氏体的点阵滑移系多,故奥氏体的塑性好,屈服强度低,易于加工塑性成形。
因此,钢锭,钢坯,钢材一般被加热到1100?C以上奥氏体化,然后进行锻轧,塑性加工成材或加工成零部件。
一般钢中的奥氏体具有顺磁性,因此奥氏体钢可以作为无磁性钢。然而特殊成分的Fe—Ni软磁合金,也具有奥氏体组织,却具有铁磁性。
奥氏体导热性差,线膨胀系数大,比铁素体和渗碳体的平均线性膨胀系数高约一倍。
故奥氏体钢可以用来制造热膨胀灵敏的仪表元件。
在碳素钢中,铁素体,珠光体,马氏体,奥氏体和渗碳体的导热系数分别为77.1,51.9,29.3,14.6和4.2。可见,除渗碳体外,奥氏体的导热性最差,尤其是合金度较高的奥氏体钢更差,所以,厚钢件在热处理过程中应当缓慢冷却和加热,以减少温差热应力,避免开裂。